The geometry of the parabolic Hilbert schemes
نویسنده
چکیده
Let X be a smooth projective surface and D be a smooth divisor over an algebraically closed field k. In this paper, we discuss the moduli schemes of the ideals of points of X with parabolic structures at D. They are called parabolic Hilbert schemes. The first result is that the parabolic Hilbert schemes are smooth. And then some of the studies of Ellingsrud-Strømme, Göttsche, Cheah, Nakajima and Grojnowski on the Hilbert schemes can be naturally generalized in the parabolic case. We determine the class of the parabolic Hilbert schemes in the Grothendieck ring of k-varieties: The class is described in terms of products of the symmetric powers of X and D and the affine spaces. Thus we obtain a formula for the generating functions of the E-polynomials or the Poincaré polynomials of the parabolic Hilbert schemes of a smooth projective surface X and a divisor D over the complex number field C. Moreover we obtain the extension of the Nakajima-Grojnowski theory for the parabolic Hilbert schemes: i.e., we introduce the incidence varieties which induce the operations on the cohomology groups of the parabolic Hilbert schemes. We see that the Heisenberg relations holds. Thus we obtain a representation of Heisenberg algebra.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملOn Difference Schemes for Hyperbolic-Parabolic Equations
The nonlocal boundary value problem for a hyperbolic-parabolic equation in a Hilbert space H is considered. The difference schemes approximately solving this boundary value problem are presented. The stability estimates for the solution of these difference schemes are established. In applications, the stability estimates for the solutions of the difference schemes of the mixed type boundary val...
متن کاملA High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملModuli of Stable Parabolic Connections, Riemann-hilbert Correspondence and Geometry of Painlevé Equation of Type Vi, Part Ii
In this paper, we show that the family of moduli spaces of α-stable (t,λ)parabolic φ-connections of rank 2 over P with 4-regular singular points and the fixed determinant bundle of degree −1 is isomorphic to the family of Okamoto–Painlevé pairs introduced by Okamoto [O1] and [STT]. We also discuss about the generalization of our theory to the case where the rank of the connections and genus of ...
متن کاملDomain decomposition schemes for evolutionary equations of first order with not self-adjoint operators
Domain decomposition methods are essential in solving applied problems on parallel computer systems. For boundary value problems for evolutionary equations the implicit schemes are in common use to solve problems at a new time level employing iterative methods of domain decomposition. An alternative approach is based on constructing iteration-free methods based on special schemes of splitting i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002